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Abstract 

We derive a general result about commuting actions on certain objects in braided rigid 

monoidal categories. This enables us to define an action of the Brauer algebra on the tensor 
space Pk which commutes with the action of the orthosymplectic Lie superalgebra spo( V) 

and the orthosymplectic Lie color algebra ~ipo(V,b). We use the Brauer algebra action to com- 
pute maximal vectors in VBk and to decompose V @’ into a direct sum of submodules T”. We 
compute the characters of the modules T”, give a combinatorial description of these charac- 
ters in terms of tableaux, and model the decomposition of V @k into the submodules Ti with 
a Robinson-Schensted-Knuth-type insertion scheme. @ 1998 Elsevier Science B.V. All rights 

reserved. 

1991 Muth. Subj. Class.: 17B65; 05E15 

0. Introduction 

0.1. Summury of results 

In this paper we show that there are orthosymplectic Lie superalgebra and orthosym- 

plectic Lie color algebra analogues of the results developed by Berele and Regev [61 
and Sergeev [45] for general linear Lie superalgebras. Our work corresponds in the 
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superalgebra and color algebra setting to what Brauer did in [9] by extending to or- 

thogonal and symplectic groups Schur’s classical results for general linear groups. 

In his thesis [42] and a subsequent paper [43] Schur proved that the action of 

the symmetric group Sk on tensor space V C@ by place permutations determines the 

centralizer of the action of the general linear group GL(V) on VNk. This result, often 

called Schur- Weyl duality, relates in a very fundamental way the representation theory 

and combinatorics of the groups Sk and GL( V). The orthogonal group O(V) also acts 

on VBk, and Brauer [9] constructed an algebra, now referred to as the Brauer algebra, 

which commutes with the O(V)-action on tensor space. When V is even-dimensional, 

the symplectic group Sp( V) also has an action on V@‘, and its centralizer can be 

described using the Brauer algebra. 

Berele and Regev [6] and Sergeev [45] have shown that the action of the sym- 

metric group Sk on VBk by “graded” p lace permutations determines the centralizer 

of the general linear Lie superalgebra when V is Zz-graded, and they have exploited 

this action to study certain modules for the superalgebra and their characters. Fis- 

chman and Montgomery [ 131 have generalized the work of [6] and [45] to cotrian- 

gular Hopf algebras which arise from enveloping algebras of general linear Lie color 

algebras. 

Our intent is to establish an orthosymplectic version of this theory. In particular, we 

(i) show there is a Brauer algebra action on VBk which commutes with the ortho- 

symplectic Lie color algebra spo( V, fl), (the orthosymplectic Lie superalgebra 

spo( V)-action is just a special case); 

(ii) use the Brauer algebra to construct a family of maximal vectors for epo( V, /I) in 

the tensor space (Theorem 3.9); 

(iii) obtain from the Brauer algebra action a direct sum decomposition of Vmk into 

spo( V, fi)-submodules T” naturally indexed by partitions 1; 

(iv) use the character theory of the Brauer algebra to compute the characters of the 

spo( V, B)-modules T” and to give a combinatorial description of these characters 

in terms of tableaux; 

(v) develop an insertion scheme for the tableaux which models the decomposition of 

the tensor space into the modules T”. 

0.2. Remarks on the results in this paper 

(a) To our knowledge, orthosymplectic Lie color algebras were first introduced in [3], 

which discusses the Brauer algebra action, but does not prove that this action commutes 

with spo( V, /?). The notion of an orthosymplectic Lie color algebra allows us to give 

a uniform proof that the Brauer algebra action on tensor space commutes with the 

action of the orthogonal group (Lie algebra), the symplectic group (Lie algebra), the 

orthosymplectic Lie superalgebra as well as more general group graded orthosymplectic 

algebras. As we discuss in Section 1, orthosymplectic Lie color algebras have a natural 

root space decomposition and a triangular decomposition which are exactly analogous 

to the Lie superalgebra case. The derivation of the maximal vectors which we give 
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in Section 3 extends the work in [4] where maximal vectors are computed for the 

classical case of the orthogonal and symplectic Lie algebras. 

(b) The action of the Brauer algebra arises naturally from the structure of the cat- 

egory of finite-dimensional modules for Lie color algebras. As we show in Section 2, 

braided monoidal categories provide a convenient framework for developing the results 

on commuting actions. Our arguments in Section 2 will apply to give a centralizing 

action of an algebra (in general it may be not be a Brauer algebra) on tensor space 

for any kind of “Lie-like” algebra or quantum group for which the category of fi- 

nite dimensional modules has a braided monoidal structure and a special isomorphism 

between V and V*. Thus, for example, one can modify our Section 2 with very mi- 

nor changes to obtain an action of the Birman-Wenz-Murakami algebra centralizing 

the appropriate quantum analogue of spo( V,/?). The idea is essentially the same as 

that used by Reshetikhin-Turaev [39], in particular, see for example [lo, Theorem 

5.3.81. It shares similarities with the methods that Fischman and Montgomery [13] ap- 

ply to get their symmetric group action, except that we have chosen to work with the 

structure on the category of modules rather than with the Hopf algebra structure as 

they do. 

(c) Berele and Regev [6] give a very interesting combinatorial description of the 

characters of the gI(m/n)-modules which appear in the tensor space Vmk (V = 6 CD 

6, dim 6 = m, and dim fi = n) by describing them as hybrid Schur functions involving 

tableaux which have a column-strict part and a row-strict part. In a similar fashion 

we give a combinatorial description of the character of the module T’ as a hybrid 

symplectic-ordinary Schur function given by tableaux which have a symplectic part and 

a row-strict part. The symplectic part is a symplectic tableau of the kind introduced by 

King (see, for example, [23]) to index basis elements for irreducible representations of 

symplectic groups. 

(d) The modules T’ are the same as the ones considered by Bars and Balantekin 

in [ 1, 21. They give Jacobi-Trudi-type character formulas, but they do not derive the 

tableaux description that we give here. Bars and Balentekin seem to indicate that the 

modules T” are irreducible, but this is not clear to us, either from their work or from 

ours. In fact, King in personal communication has told us that he has found explicit 

examples of Ti which are not irreducible. 

(e) There has been other work, notably [ll, 12, 27, 281, which describes how to 

index representations of the Lie superalgebra epo( V) by partitions, but none of these 

papers has given an interpretation for their characters in terms of tableaux. The main 

ingredient in developing the tableaux description is the identity in Theorem 4.24(h). A 

very similar version of this identity (Theorem 4.24(i)) appears in [ll]. This identity 

could be used in combination with the work of Sundaram [47] to give another combi- 

natorial interpretation for these characters. See [22] for a survey of the use of tableaux 

in the study of representations of Lie superalgebras. 

(f) There is an extensive literature of papers by Bernstein and Leites [7, 29, 301, 

Kac [18, 191, van der Jeugt et al. [15-171, Penkov and Serganova [3437,44], Kac and 

Wakimoto [20], and others which studies representations of Lie superalgebras using Lie 
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theoretic and geometric methods. These approaches also yield character formulas, the 

most general of which is the Weyl-Kac character formula. We have not made any effort 

to ~derstand our character formulas in this other setting, although the formulas must 

be equal in many cases, Even for the superalgebra gI(pn/n), the connection between 

the results of [6] and [45], the Sergeev-Pragacz character formula, and the Weyl-Kac 

character formula needs to be better understood. King and others have done some 

work in this direction (see [ZZ]). The relationship between the centralizer approach to 

the representation theory of Lie superalgebras and the approach via Kac modules and 

typical weights also needs to be better explained. 

(g) In our work we have not included proofs of the analogue of Schur-Weyl duality, 

i.e. we have not shown that the actions of the Brauer algebra and the Lie color algebra 

epo( V, /?) each generate the full centralizer of the action of the other. Let us make just 

a few remarks on this point. 

(i) In the general linear-s~et~c group case of [6, 13,451 one can get away 

with proving only half of the duality and using the semisimplicity of the group 

algebra of the symmetric group C& to obtain the other half for free. This is not 

possible in the o~hosympie~tic Brauer algebra case since the Brauer algebra is 

not necessarily semisimple. 

(ii) The usual trick for proving that the general linear Lie algebra gl( V) generates 

the full centralizer of the symmetric group action uses the idempotent C,Esk 0 

(which corresponds to the trivial Sk-character) to construct a projection map 

onto the gl(V)-invariants. Unfortunately, this is not available in the Brauer 

algebra case since the Brauer algebra does not have a one-dimensional module 

which affords invariants. 

(iii) We have succeeded in establishing various parts of both halves of the duality in 

our orthosymplectic-Brauer algebra setting but have chosen not to include these 

results in this paper. Optimally what one would like is a proof of the duality 

which handles all the cases simultaneously rather than arguing separately for 

the orthogonal group, then the symplectic group, then the orthosymplectic Lie 

superalgebras, then the quantum orthogonal group, etc. 

(1) The relationship between the centralizer approach to the representation theory 

of Lie superalgebras and the approach using Kac modules and ~ical-at~i~al weights 

needs to be better understood. To our knowledge this is only partially done even for 

the gI(m/n) case [ 15-171, and it is not known how to verify directly that the Wcyl- 

Kac character formula for typical representations and the Pragacz-Sergeev character 

formula for gl(~/~)-i~educible modules in tensor space are equal. Here we have not 

made any attempt to relate our results to the Weyl-Kac formula, although this should 

be done sometime in the future. 

(2) In dete~i~ing the characters of the modules T”, we have shown that they are 

equal to polynomials SC&~,X~~, . . . ,x,,x;‘, yl, y;‘, -. . , ys, y;‘, 1) which appear as the 
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coefficients of the Schur functions s,(zr, . . , ,z~+~) in the identity 

=c -1 
SC&l 3x1 )...) x,,x,',y,,y,"..., J&y,‘, l)S,'(zlr...>zr+s). (0.1) 

There are two classical identities of Littlewood [31] and Weyl [49] for the characters 

sp/( of the symplectic group Sp(2r) and the characters SC+ of the orthogonal groups 

SO(2s + 1): 

rI (1 -ZiZj) 
1 

l<i<j<r 
n,'=l ny=,(l -XiZj)(l -X~‘Zj> 

=c -1 
~P,(XlJ, >... ,-w,‘b&l,...> zr), (0.2) 

n (1 -zlzj) n(l +Zj)n n(l +YizjN1 +Yi’zj) 

I<i<j<s j=l j=l r=l 

= c so,~(y,,y,',..., ys, y,‘, 1)S&l,. . .A>> (0.3) 

where p’ is the conjugate of the partition p. When the orthogonal portion is zero, 

i.e. s = 0 and the variable 1 is not present, identity (0.1) gives the classical result in 

(0.2), and when the symplectic part is zero, i.e. r=O, identity (0.1) reduces to (0.3). 

Is there a combinatorial interpretation for the functions scP which expresses scP as 

a hybrid object built from symplectic and orthogonal characters? Our combinatorial 

description of scP is as a mixed symplectic-general linear character rather than as a 

hybrid symplectic-orthogonal character. 

(3) Find a general Schur-Weyl duality result, see remark (g) above. 

1. Lie color algebras and epo( V, j?) 

1.1. Lie color algebras 

Let K denote a field of characteristic zero (this assumption could be relaxed, but for 

convenience we stay in characteristic 0). Let G be a finite abelian group with identity 

1~. A symmetric bicharacter on G is a map fl : G x G -+ K* into the multiplicative 

group of the field such that 

(1) P(ab,c)=P(a,c)P(b,c), 

(2) B(a, bc) = Ka, b)P(a, c), and 
(3) P(a, b)/?(b,a) = 1, for all a, b E G. 

Taking a = lo in the first relation and b = 1 o in the second shows that /I( 1 o, c) = 1 = 

P(a, lo) for all a,cE G. 
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A K-vector space V is G-graded if it is the direct sum V = enEG V, of subspaces 

indexed by the elements of G. If v E V, for some a E G, then u is homogeneous of 

degree a. 

Assume fl is a fixed symmetric bicharacter on a group G. A Lie color algebra 

(g, G, fl) is a G-graded vector space g = eaEG ga with a K-bilinear bracket [ , ] : g x g + g 

such that 

(1) k,, &I Cr gab, for all a, b E G, 

(2) b, VI = -P(b,a)[.wl, for x 6 So, YE gb, and 
(3) [x, bzll= Kx,yl,zl + B(b,a)Cy, bill, for x E g,, Y 6 gb? and all z E 9. 

When the group is the cyclic group G = { & 1) = {( - 1)” 1 a = 0, 1 } of order 2 and 

p(( - I)“, (- 1 )b) = (- 1 )“, then g is a Lie superalgebra. In this case it is customary to 

regard the grading as by the additive group of the field 772 = (0, l}, g = go @ g,, with 

P(a, b) = (- 1 )nb for a, b E Z2. 

Remark 1.1. Since the bicharacter fl for a Lie color algebra is symmetric, /3(a-‘,a) = 

B(a,a)-’ = fi(a,a)= fl. Thus g = g(s) $ g(t), where 

9(O) = CB ga and gCl)= @ 9,. 
4 B(4a)=l a, /Qa,a)=- I 

One shows easily that B(ab, ab) = /?(a, a)/?(b, b), which implies the map a H P(a,a) E 

{kl} is a homomorphism. It follows that the multiplication in g = gCo) $ gt,) is Zz- 

graded, but still g may not be a Lie superalgebra. 

1.2. The category of jnite-dimensional modules for a Lie color algebra 

Let g be a Lie color algebra. A g-module is G-graded vector space V = eaEG V, 

with a g-action g @ V + V, x @ v H xv such that 

(1) if xEg, and VE 6, then xvE I&,, 

(2) [x, y]v =x(yv) - P(b,a)y(xv), for all x E g,, y E gb and all v E V. A g-module 

morphism from a g-module A4 to a g-module N is a h--linear map C$ : A4 + N such that 

(1) &M,) C N, for all a E G, and 

(2) 4(xm) =x&m) for all x E g and all m EM. 

If M and N are g-modules, then the tensor product A4 @N is a g-module with 

(1) G-grading given by (M @ N)C = eabYc M, @Nb, and 

(2) g-action defined by 

x(m@n)=xm@n+j(b,a)(m@xn), (1.2) 

for all x E ga, m E Mb, and n E N. If f : M + U and g : N + V are g-module morphisms, 

then 

f @g:M@N --+ U@V, 

m@n ++ f(m)@g(n) 

is a g-module morphism. 
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The braiding morphisms are the g-module isomorphisms defined by 

&,cM@N+N@M, 

m@n++fl(b,a)n@m 

for all m EM,, n ENt,. 

(1.3) 

The trivial g-module is the one-dimensional rc-vector space 1 = u with grading 

1 = 11~; and g-action defined by xv=0 for all x E g and all v E 1. The dual of a 

g-module M is the vector space M* = Hom,(M, rc) with 

(1) G-grading given by (M*)a = {f EM* 1 f(Mb)=O if bfa-‘}, and 

(2) g-action given by 

(xf) (m) = -P(b,a)f(xm), (1.4) 

for all x E ga, f E (M*)b, and m EM. 

It follows easily by direct verification that the category of finite dimensional 

g-modules with the above constructions satisfies the definitions and axioms of a braided 

rigid monoidal category (see [ 10, Section 5.2B]). Although we phrase our results in 

this section and the next in the language of braided monoidal categories, the reader 

need not know anything about braided monoidal categories beyond the above standard 

constructions of modules. To summarize, we have 

Proposition 1.5. Let (g, G, j?) be a Lie color algebra. Then with the above construc- 
tions the category of jnite-dimensional g-modules is a braided strict rigid monoidal 

category. 

1.3. The general linear Lie color algebra gI( V, j) 

Let G be a finite abelian group with symmetric bicharacter j?. Assume V = eaEG V, 

is a G-graded k-vector space. Let gl(V,p) =End(V) denote the K-vector space of 

K--linear maps from V to V with the G-grading assigned by 

gI(V,/3),={xEEnd(V)Ix&,CV,b for all bEG} 

and with the bracket 

[x, yl =XY - Kb,a)yx 

for all x E gI( V, /&, y E gI( V, P)b. Then gI( V, B) = eaEG gI( V, fi)a with this bracket is 

a Lie color algebra, the so-called general linear Lie color algebra. 

1.4. The orthosymplectic Lie color algebra spo(V,‘,B) 

A fi-skew-symmetric bilinear form is a rc-bilinear map ( , ) : V x V -+ K such that 

( 1) the form ( , ) on V is nondegenerate, 

(2) (I& &) =0 if a#b-‘, and 

(3) (v,w) = -P(b,a)(w,v), for all v E V,, w E V,. 
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For each a E G, define 

(x4 0) f p(b,a)(u,xu) = 0, 

’ for all u E & and 21 E V 

Then the orthosynplectic Lie color algebra is the Lie color subalgebra 

auo( K 8) = @ Vo( K B)Cl 
CZEG 

of the Lie color algebra gl(~,~). 
In a similar fashion to Remark 1.1 we define 

&9= @ V, and vi,= e3 V (1’ 
a. p(w)=1 a, p(a,a)=-l 

The form (,) when restricted to l$) is skew-symmetric and to J$i) is symmetric. 
In this way V is a &-graded vector space with a supersymmetric form. Necessarily 
dim 50) is even, and so throughout this paper we shall fix 

dim&f=m=2r and dimQt)=n=2s or 2.s+ 1. 

Remark 1.6. If 41) =(0) and fi(a, b) = 1 for all a, bc G, then spo(V,fi) is just the 
symplectic Lie algebra sp( &,I) with a G-grading. On the other hand, if 50) = (0) and 
/? is such that 

(i) j?(b, a) = - 1 for all a, b with /?(a, a) = P(b, b) = - 1, and 
(ii) /I(b,a) = 1 for all a, b such that fl(a, a) = 1 and P(b, b) = - 1, 

then /?(b, a) = 1, for all a, b such that b(a, a) = 1 = p(b, b), and spo( V, fi) is the or- 
thogonal Lie algebra SO( yt)) with a G-grading. In this way the color algebra approach 
allows us to treat simultaneously the orthogonal and symplectic Lie algebras, the or- 
thosymplectic Lie superalgebra (when G = &), and all the other orthosymplectic color 
algebras as well. 

Remark 1.7. It is convenient in what follows to adopt the convention that fi(u,x) = 

~(a,~) and ~(~,~)=~(a,~) h w enever u E V,, ti E Vb and x E gl( V,&, are nonzero. 
When notation such as p(u,x) or /3(u,v) is used, it is tacitly assumed that the ele- 
ments are homogenous. 

We assume that the form ( , ) (or the field K) is such that there exist homogeneous 
bases 

(3.8) 

and 

B=Boii&, 
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of I$), y*), and V, respectively, such that 

(u,w) = (u*,w*) = 0 and (u, w*) = -p(w*, u)(w*, u) = a,,, 

for all v,wE{t*,t;! ,..., tr,u*,u2 ,..., uS,(uS+*)}. It is to be understood that u,+* occurs 

only when n = 2s+ 1 and in that case us*,, = u,+*. We extend the definition of * so that 

(t*)*=ti and (z.$)*=ui for all 1 <i<r and all 1 <j<s. Note if uEB and 0~ I$, 

then a* E I$*. 

The matrix of the form ( ,) relative to the basis B is the matrix FB = (Fb,bf)b,br,=~ 

with Fb,bl = (b, b’). More explicitly, 

FtZ ,t: = 1, Ft:,tl = -1, Fu,,u; = 1, Fu* u = 1, I’ I 
(1.9a) 

for i = 1 ,..., r, and j=1,2 ,..., S, (S + 1 ), and Fb,b/ = 0 for all other pairs b, b’ E B. The 

inverse of the matrix FB is the matrix Fi’ = (Fci,) with 

Ft-:, =-1, F& = 1, F-’ 
I’, / , I 

,,,,; = 1, Fu;.‘, = 1, 
J’ i 

for i= 1 ,..., r, and j= 1,2 ,..., s, (s + l), and FL:, = 0 for all other pairs b, b’ E B. 

1.5. Roots and root vectors in spo( V, p) 

The choice of the basis B of V in (1.8) affords a realization of the elements of 

gl( V, p) and spo( V, /?) as matrices. The matrix units E,,,, defined by E,,,y = by,~v for 

v, w,y E B, determine a homogeneous basis of gl(V,b) with E,,, E gl( V, &b-l when- 

ever v E V, and w E vb. 

For x E gI( V, j3) to belong to spo( V, j) the relation (xv, w) + ~(v,x)(u,xw) = 0 must 

hold, and that translates to the matrix equation 

Z~X*&W $ ~(V,X)V*FBXW = 0, 

where “t” denotes the usual matrix transpose. When v, w E B, that equation reduces to 

(x*),&k, + B(v,x)F,,,+,, = 0, 

or equivalently to 

x,*,0* w*,w F +B(v*~)Fv+v,w = 0, 

after replacing v with v*. Using the fact that Fv,, = -fi(v, v* )F,,,* we see that 

Fw,w*xw*,v- = -B(v,v)p(+w)p(v*,m,“*&!,w 

must hold for all v,w E B. Therefore, whenever v,w E {tl,. . . ,&,uI,. . .,us,(us+~)}, then 

x,*,0’ = -p(v, v)/I(w, w)~~(v*,x)x~,,,,. For such v, w, it follows that E,, - P(b, b)P(a, b) 

E W’,U’ belongs to spo( V, &-I if v E V, and w E Vb. In particular, the elements 

h,=E,,,-E,.,,* v~{t ,,..., ,., t W,...,h) (1.10) 
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below to wo(V,',h,, and they span the space 1) of diagonal matrices in apo( V,p). 

Now 

g = @ g” where g” = {X E g 1 [h,x] = cc(h)x for all h E b}. 

rEt)* 

The set A = {ct E b* 1 ga # (0)) is the set of roots of g= spo( V,j?) relative to b. We 

define 

A,={a~A~g’fTg,f(O)} for each QEG 

and 

do= u A,, A, = u A,. 
a,b(a,a)=l a,p(a,a)=-I 

Let {a,} be the dual basis in b* given by 

s,(kv) = &,, for all v,wE{tl,..., tr,ul ,..., us}, 

and set a,,$+, = 0. Since E,,,E,.,,. E gl( V, &-I if v E V,, WE vb, v,w~B, the 

elements 

E,,-P(w,w)B(v,w)E,*,,*, ~,~~{tl,...,tr,~1,...r~sr(us+1)}, ufw, 

&*,, +P(u,v)B(w,w)B(u*,w)E,-,,, r,w~{tt,..., r, t Ul,...,%}, 

where v#w if u,w~{q ,..., us}, 

4,. +P(v*,w)&,P, v,w~{tl,...,t,,ul,...,u,}, 

where vfw if v,w~{ut ,..., us}, (1.11) 

along with the elements h, in (1.10) form a homogeneous basis of g = spo( V, j3). The 

elements in ( 1.11) are in the root spaces 9”’ -Ew, ggcJ +w, and g&r+&,, respectively. Thus, 

dim(g”)=l for all EEA. 

As a shorthand set ai = q and 6, = E,,, for 1 5 i 5 r and 1 5 j 5 s. Then the roots 

for 5p0( V, p) have the following expressions in terms of the sj’s and Sj’s: 

(i) When n=2s+ I, 

do = {k(si * cj), *2Ei, *(Sk * 6/),1& / 1 L i # j 5 r, 1 _< k # t! < s}, 

Al = {*Ei,k(Ei zt Si)) 1 5 i < r, 1 < j < s}. 

(ii) When y1= 2s, 

Ao={f(EifEi),~2Ei,f(~k~6r)Il <i#j<r, 1 <k#L’<s}, 

Al={f(~i*dj)Il <i<r, 1 <j<~}, 

which are exactly the same as the corresponding sets of even and odd roots for the 

simple Lie superalgebra 5po( V) which appears in the classical Lie superalgebra theory; 

see [19]. 
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If the simple roots are selected to be 

Xi=si-E/+i, 1 <i<r-1, Cl(r+,,=dj-fii+l, 1 <j<S-1, 

8, ifn= 1, 6, ifn=2s+l, 
c&. = SI 

s, - 61 otherwise, r+s= 6,-i+& ifn=2s, 

then all the simple roots except CI, belong to do. Every root x E d is a nonnegative or 

nonpositive integral combination of the simple roots. Accordingly we write c( > 0 or 

x < 0. Define elements xi E gal, 1 5 i 5 r + s, to be the basis elements in ( 1.11) given 

by 

xi = EL,,, - B(ti,ti+l)E,:,,.tF, l<i<r-1, 

.G = EL,, + P(L ~1 )E,;,t: 3 

X r+j - - EU,s+l +B(uj,uj+l)E,;+,,,,~, lljls-1, 

E u,,u.,+, + ,%Gu,+I )Eq+,,u; if n=2s+ 1, 
x r+s = 

-% ?“F-, + Ku,:, ~1 )L_,,,: if n = 2s. (1.12) 

Then 

g=g-@beg+ where g_ = @ ga and g+ = @ g”. 
SC0 a>0 

(1.13) 

The subalgebra g+ in (1.13) is generated by the root vectors xi, 1 < i < Y + s. 

2. The Brauer algebra action on tensor space 

2.1. The unfolding map 

A 2k-one-factor is a graph with one row of 2k vertices and k edges such that 

each vertex is incident to precisely one edge. We draw one-factors so that the edges 

travel above the row of vertices and denote the set of 2k-one-factors by cr2k. 

We assume that the vertices are numbered 1 to 2k from left to right and often rep- 

resent a one-factor f E &k as a sequence of pairs f = ((81, rl), (i!,, rz), . . . , (tk, rk)), 

where ti, yi E { 1,. . . ,2k} give the left vertex and right vertex respectively of each edge. 

As an example, the sequence of pairs (( 1,4)(2,7)(3,5)(6,8)) represents the g-one- 

factor 

1 2 3 4 5 6 7 8 

A k-diagram is a graph with two rows of k vertices each, one above the other, and 

k edges such that each vertex is incident to precisely one edge. We draw k-diagrams 

so that the edges remain inside the rectangle formed by the vertices and denote the set 
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of all k-diagrams by ?&. We number the top vertices left to right by 1,2, _ . . , k and 
the bottom vertices left to right by I’, 2’, . . . , k’. 

The unfolding map 

u : gk -+ &k (2.1) 

converts a k-diagram into a 2k-one-factor by relabeling and repositioning the vertices so 
that the sequence (1’,2’, . . . ,k’,k,(k-1) ,..., 2,l) becomes (I,2 ,..., 2k). As an example, 

~~~1,4’~~2,1’~~3,5~(4,6’~~6,5’~~2,3’~~=((1,11)(2,3)(4,12)(5,7)(6,9)(8,10)), 

123456 

12 34 5 6 7 8 9101112 
1’ 2’ 3’ 4’ 5’ 6’ 

This unfolding map is a combinatorial realization of the isomorphism End,( V*k) -+ 
(V@2k)a; see Remark 2.13 below. 

2.2. The Brauer algebra 

Let tc be a field of characteristic 0 and assume q E xc. The product of two k-diagrams 
d, and d2 is obtained by placing d, above d2 and identi~ing the vertices in the bottom 
row of d, with the co~esponding vertices in the top row of d2. The resulting graph 
contains k paths and some number c of closed loops. If ci is the k-diagram with the 
edges that are the paths in this graph but with the closed loops removed, then the 
product dld2 is given by dld2 = @d. For example, if 

w 
d, = and d2 = 

- 

then 

The Brauer algebra Bk(q) is the Ic-span of the k-diagrams. The rc-linear extension 
of the diagram multiplication makes &(q) into an associative rc-algebra with identity 
given by the diagram 

1 2 3 (k-l) k 

l=I I I IIl.1'1 * 
1’ 2’ 3’ (k-l)’ k’ 

By convention Be(q) = B1 (q) = K. 
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The diagrams in Bk(y) which have all their edges connecting top vertices to bottom 

vertices form a symmetric group Sk. The elements 

Si=[ 1:: I)(‘1 1:: [ and ei=[::: [ y1 [ 1:: [ 1 

1 <i<k-1, generate the Brauer algebra Be. The following theorem is “oft-quoted” 

(see for example [33]), but we are not aware of a proof in the literature. In the interests 

of space we shall continue the tradition and not include a proof here either. 

Theorem 2.2. The Brauer algebra Bk(q) has a presentation as an algebra by gener- 

ators SI,S~, . . . ,sk__l,el,e2,. . , e&l and relations 

s;= 1, e? = v]ei, eiSi = Siei = ei, l<i<k-1, 

S,Sj =SjSi, S,ej =t?,Si, t?it?j = ejei, Ii - jJ > 1, 

SiSi+lSi =Si+lSiSi+l, eiej+l ei = f?i, ei+iWi+i =ei+i, 1 <i<k-2, 

S$i+lf?i=Si+lf?i, G+leisi+l = G+lsi, 1 IiLk-2. 

2.3. Some facts about braided rigid monoidal categories 

Let +Z be a rc-linear braided rigid monoidal category whose identity object we denote 

by 1. The defining property of 1 is that there are natural isomorphisms V @ 1 Z V” 

1 @ V for all V E V. For simplicity, we assume that 9? is strict. Although everything we 

do in this section works in complete generality for any K-linear braided rigid monoidal 

category that is strict, the reader who prefers not to work with general categorical 

language can just note that for the category of finite dimensional modules for a Lie 

color algebra g, we have the following: 

(2.3) Let V be an object in W. The space of invariants in V is the K-vector space 

defined by 

V” = Homw(l, V). 

(2.4) Every object V E V has a dual, i.e. there is an object V* in ‘8 and morphisms 

pr,: l--tV@V* and evv:V*@V-+l. 

The dual of V is unique up to isomorphism. 

(2.5) If M and N are any two objects in %Y, then 

(M@N)*gN*@M*; 

in fact, this isomorphism can be explicitly seen using the canonical maps 
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and 

id@ev~,@id 
N*@M*@MMN---- N*@l@N%N*@N%l. 

(2.6) There is an isomorphism of K-vector spaces 

Home(M,P@N*) + Homx(M@N,P) 

$HG+ 
3 

where 4 is the morphism defined by 

The inverse map is 

Homw(M@N,P) + Homw(M,P@N*) 

(P+-+* 

where Ic/ is given by 

MgMgl id3MgN~N* “Zpg~* 

(2.7) If U and V are any two objects in %Y, then there is an isomorphism 

~“,“:lJ@v+v~u. 

(2.8) If V is an object in %?‘, then the isomorphisms 

ii = id@(i-1) @ (-kv,v) @ id@(k-L-‘) 

satisfy the properties 

riii’,l = kjdi if (i - jl>2, dirii+,di = iii+liiii+l. (2.9) 

2.4. The bruid group action on VBk 

The relations in (2.9) imply that the Rj’s afford a representation of the braid group on 

VBk (see, for example, [lo, Section 15.2A]). Note that since iv,” is an isomorphism 

inHoms(V , , @* V@*) so is -iv,“. The only reason that we are adjusting by a negative 

sign is so that the di will be the images of the Brauer algebra generators in the map 

Y which will be discussed in Theorem 2.16. 

If z is a permutation in the symmetric group define 

where 7~ = si, s,* . . . Sip is a reduced expression of rc (a reduced expression for x is a 

product of simple reflections Si = (i, i + 1) with p as small as possible). Since the 

relations in (2.9) hold, the map k, E Homq( V @k VBk) is independent of the choice , 

of reduced expression (see, for example, [8, Proposition 5, Ch. IV, Section 1, no. 51). 

If f E C2k is a 2k-one-factor, say f = ((~1,q)(&r2). (tk,rk)) with er <& < . . <tk, 
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let 7fr be the permutation in the symmetric group Szk given by 

( 

1 2 ... k kfl k+2 ... 2k 

‘f = t, t2 ‘.’ tfk rk rk-] .” rl 1 
E S2k. 

Then define 
* ” 

Rf = R,f for f E &k and rid =&cd) for d E %?k, 

where u : gk 4 62k is the unfolding map of (2.1). 

(2.10) 

2.5. The maps @ and y/ 

Let V be an object of %7 such that V E V*. Fix an isomorphism 

N * F:V-V 

in Homg(V, V*). From (2.5) there is a natural isomorphism (V@‘)* S(V*)@k. Let pTk 

and e%k be the compositions 

frk : lp* p&k B (v@k)*; v@‘k g ( v* )@k 

and 

Now define a map 

@:&k~Hom~(l,V@2k)=(V@2k)V, 

fH@f 

by letting @f be the composition 

id”‘@(F-‘)a3k 
@f:lsV@k@(V*)@kBV 

~2k 2, 
-Pk. 

Similarly, define a map 

Y : i@k + Homw( VBk, VBk), 

d H Yd 

by setting Yd equal to the composite map 

(2.11) 

(2.12) 
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The map @ associates an invariant @f in (V@' )’ to each 2k-one-factor f. The map 

Y allows us to define an action of each k-diagram d on the vector space V@’ by 

letting d act by the homomorphism yd. 

Remark 2.13. The maps @ and Y are related. Indeed, ‘u, is the image of (id@‘@F@‘)o 

@u(d) E Homq(1, If@” @ (V@‘)*) under the isomorphism Horn& V@’ @(I’@‘)*) E 

HomdV , @k VBk) which is given by setting M = 1 and N = P = VBk in (2.6). 

2.6. The commuting action of the Brauer algebra on the spo( V, p)-module V@’ 

Let G be a finite abelian group, /I a symmetric bicharacter on G, V a G-graded vector 

space with a nondegenerate /?-skew-symmetric bilinear form ( , ) and g = spo( V, p). 
There is a g-module isomorphism 

* F:V+V, 

v H (v, .). 

In this special case, we will compute the map Y from (2.12) explicitly. 

Let B={vl,..., UN} be a homogeneous basis of V, i.e. for each 1 < i 5 N, Vi E V,, 

for some Ci E G. Let {vi,. . . , v”} be the dual basis in V*. Assume 

FB = (Fi,j)i <i,j<N where (vi, vi) = Fi,j (2.14) 

is the matrix of the form ( , ) with respect to the basis B. Sometimes we will write 

F u,,L5 instead of Fi,j as we have done in the previous section. Let FBw* = (6.:’ )lli,j<N _ 
be the inverse of the matrix FB. Then 

F(Vi)= 5 Fi,jV’ and F-‘(d)= 5 F,G’vi. 

j=l i=l 

(2.15) 

Let d be a k-diagram. Label the top vertices (left to right) with a sequence a = (al, 
az,. . . ,a,+) of basis elements aj E B and the bottom vertices (left to right) with a 

sequence b = (bl, bz, . . . , bk) of basis elements bi E B. Assign a weight to each edge 

and each crossing of this labeled k-diagram according to the following: 

(1) 

(2) 

(3) 
(4) 

If a horizontal edge (a,a’) on the top has a to the left of a’, assign the weight 

F a,af to it. 

If a horizontal edge (b, b’) on the bottom has b to the left of b’, weight it by 

Fb;;, . 
Weight each vertical edge (a, b) by c?~,J (Kronecker delta), 

Weight each crossing by -/?(8i,&)), where ~5’1 is the label of a vertex adjacent 

to the first edge, and t5 is a vertex adjacent to the second edge in the crossing. 

Of the four vertices adjacent to the two edges that cross, /i and 82 should be 

chosen to be the last two vertices (in order) when counting off the vertices in a 

counterclockwise fashion beginning from the bottom left comer of the diagram. 
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The weight of the labeled k-diagram, which we denote da,b, is the product of the 

weights over all the edges and crossings. For example, the weight of the following 

labeled 7-diagram 

1’2 Q 2’ v2 v, 1’ i v 4 

is the product (-1)5F 333 F F-‘F-‘6 132 2,2 2,4 152 S 133 6 /?( 2-4 02, u3 )B(Ol> U3MU4,Vl >2B(v4, 04) = 0. 

We have adopted an abbreviated notation in displaying the weights of the edges so as 

not to clutter the picture. 

Theorem 2.16. Let G be a finite group and let 1) be a symmetric bicharacter on G. 

Assume V is a G-graded vector space with a P-skew-symmetric bilinear form (,). 

Let g = spo( V, 8) be the orthosymplectic Lie color algebra. 

(a) The image of a k-diagram d E Sk, under the map Y : gk --f Horn,,, V@‘, V@‘) 

,from (2.12) is the homomorphism Yd given explicitly by 

ttzl B...%ak)yd= c d,,bb, @...@bk, 
h,....,hrtB 

where du.t, is the weight of the k-diagram d with top vertices labeled by al,. , ak and 

bottom vertices labeled by bl, , bk. ( We huve chosen to write yd as an operator on 

the right so that (b) will hold.) 

(b) Let m =dim 50, und n =dim 41, where V(O) = CcEG,BCc,cjzl V, and Vc1, = 

c CEG,,jCC.c,=_, V,. Then the map Y extends to a homomorphism 

Y:&(n-m)+Hom,(V ) c3k y&S) 

of algebras. 

Proof. (a) In this setting the map pTk is given by 

which can be seen by induction using (2.5). One computes yd from the definition in 

(2.12). The following sequence gives a representative pictorial example, but the general 

case is done in exactly the same fashion. For brevity in the pictures we reduce the 

notation even fmther and write i3 for vi3 and i3 for the dual vector vh. 
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Let ai = v,,, for i = 1,2,3,4 and let us compute the action of Yd for the diagram 

on the element al@CZ@4 = v,,v,,v,,v,, E P4 (we omit the tensor symbols 18 as another 

space-saving device). Note that the image of the diagram d under the unfolding map 

u of (2.1) is the one-factor 

u(d) = - A -. 

Following the definition of yld as a composite map and using the fact that ~v,v( v @ w) = 

-~(w,v)w@v, we have 

. . . . j?rk@id”” 
a1 a2 a3 4 - 

1,,12,lpl4 
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In doing these calculations it is helpful to note that deg(&) = deg(q) = deg(v’)-’ = 

deg(F-Iv’)-‘. 

(b) It follows from the definition of the weights of labeled diagrams that 

and 

for the case k = 2 and the 2-diagrams 

(2.17) 

e= and S= 

For arbitrary k, 

and 

ye, = id@(i-l) @ y g id@(k-i-l) 
e 9 

where ci and si are the generators of the Brauer algebra in Theorem 2.2. Given these 

observations it is sufficient to check that Ye, and YS, satisfy the relations in the statement 

of Theorem 2.2, for i = 1. All of these relations are easily verified by direct calculation. 

For example, the relation e: = (n - m)el follows from the computation 
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= (4, viz)(n - mYi,. 

In this argument the critical facts used are that FJ,,j: = -P(Vj,, Uj, )Fj,,,, and that e2,j, # 0 

forces deg(u,, ) = deg(rj,)-’ SO that fl(t~i,, vj, ) =P(v~,, vj2)-’ =j(rjz, vj2) = *l. 

The relation 5: = idBk follows from the fact that B(ii, iz)fi(iz, il)= 1, since /? is 

symmetric. The relation Iv,, Y5, = Y$ Ye, = Ye:, can be derived from the same type of 

easy calculations. One shows that 

(vi, Vi2 Vi, > Kj KU,, %I = (o,, Viz o,, > Yyu,, lu,, Ysz 

= (-Ki3, il lElj(i2, il )EB(i3, iZ))Vi, Vi2 oil 

and the remainder of the relations are checked with similar calculations. 0 

2.7. spo( V, /I)-invariants in V@2k 

We retain the setup and notation of Theorem 2.16. If f is a 2k-one-factor, let fb 

denote the 2k-one-factor f with its vertices labeled (left to right) by the sequence 

b=(b,,..., b2k) of basis elements bl , . . . , b2k E B. Assign a weight to each edge and 

each crossing of the labeled one-factor fb as follows: 

(a) Weight the edge (b, 6’) by FL;,. 

(b) Weight each crossing by -/$ti, d2) where ei is the label of a vertex that is 

adjacent to one of the edges, and t2 is the label of a vertex that is adjacent to the 

other vertex. Of the four vertices adjacent to the two edges that cross; di and /2 should 

be chosen to be the last two vertices (in order) when counting off the vertices left to 

right. 

Given a one-factor fb which is labeled by b= (bl,. , bzk) define the weight wt(fb) 

of fb to be the product over all the weights of the crossings and edges. The proof of 

the following proposition is exactly analogous to the proof of part (a) of Theorem 2.16. 

Proposition 2.18. Retuin the setup and notation of Theorem 2.16. The image of a 

2k-one-factor f E &k, under the map @ : @2k + ( V@2k)g from (2.11), is the invariant 

@f given explicitly by 

q =@f.(l)= c wt(fb)bl 8 . . EJ ho 
h,,...,hzr EB 

where the sum is over all possible Iubelings b = (61, b2, . . . , b2k) of the one-factor f. 

3. Maximal vectors in tensor space 

Let h denote the diagonal matrices in apo( V, fi) as in Section 1. An spo( V, /Q-module 

M is said to have a weight space decomposition relative to h if A4 = @CPEh* M,, where 
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MP = {V E A4 ] hv = ,u(h)v for all h E @}. A vector v+ in A4 is a maximal vector of weight 

jb if g+ U+ = (0) and hv+ = i(h)v+ for all h E lj. In particular, the module V is an irre- 

ducible spo( V, /J)-module with a unique (up to scalar multiple) maximal vector v+ = tl, 

which has weight ~1. All the basis vectors in B = {tl, t: ,...,tr,t~,U,,UT,...,u.~,u.~, 
(u,+I )} are weight vectors with weights given by 

wt(t;)=s;=-wt(t*), i= l)...) Y, 

Wt(Uj)=dj=-Wt(UT), j= l,..., S, (3.1) 

wt(u,y+i)=O if n=2s+ 1. 

If 111 8 . @ok is a simple tensor in VBk with vi E B for each i, then its weight is 

just the sum of the weights of its factors. 

In this section we construct maximal vectors of V@‘k using the elements si,e; coming 

from the Brauer algebra. The maximal vectors in V@’ are often a help in locating its 

irreducible summands. We begin with a few combinatorial preliminaries. 

3. I. Youny symmetrizers, contractions, and ~jpo( V, /3)-submodules of VBk 

Suppose i. is a partition of k. A standard tableau T of shape 2 is obtained by filling 

in the frame of ;I with the elements of X = { 1,. , k} so that the entries increase across 

the rows from left to right and down the columns. Let P’F(X) denote the set of all 

standard tableaux as A ranges over all the partitions of k. We associate two subgroups 

in the symmetric group Sk to each standard tableau T E YY(X). The first is the row 

group Rr consisting of all permutations in Sk which permute only the elements of X 

within each row of T, while the second is the column group CT of T or group of 

permutations moving only the elements of X in each column. Then the element 

(3.2) 

has the property that there is some h(i) E Z + that only depends on the underlying 

frame of T such that s$ = h(i)sr (see [49, Ch. 4, Section 21). If yr = (l/h(i))ST, then 

y+ = yr so that yr is idempotent. We refer to yr as the symmetrizer determined by T. 

For each T E YcF(X) the space CskyT is a minimal left ideal of the group algebra 

csk and csk = @TE_y.TT(,9.) @skyT, (see, for example, [49, Ch. 4, Section 41). 

Starting at the left end of the first row and moving from left to right we compare the 

entries of two standard tableaux T1 and T, of shape 1,. If the first nonzero difference 

ji - jz is positive for corresponding entries ji in TI and j2 in T2, then we say T, > T2. 

If all corresponding entries in the first row are equal, then we proceed to the second 

row, etc. Thus, T, > T2 if ji > j2 for the first pair of corresponding entries ji, j2 which 

differ. With respect to this ordering, we have the following lemma. 
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Lemma 3.3 (See, for example, [49, Theorem 4.3D]). Let TI, T, E YF(X) be two 

standard tableaux of the same shape. If T, > T2, then yT, yT2 = 0. 

A partition A= (ni,. . ,&,O, . . .) E I is said to be of (r,s)-hook shape if A,.+, 5s. 

If .Y is a subset of X of cardinality 1, then 

XY’F~,,(LZ) def {T E P’F(.S) 1 T has an (r,s)-hook shape} (3.4) 

is the set of all standard tableaux with entries in LF of shape A as 3. ranges over all 

partitions of I that are (r,s)-hook shape. 

Example. Suppose Y = 2 and s > 2, and let E, = (l*, 2*, 4) = (4,2,2,1,1) so that 

Then i F 10 is of (2,s)-hook shape since A*+, =2 5s. The standard tableau T E 

KYZ,,( Y), where .Y = { 1,2,4,6,7,8,9,10,11,14}, depicted below, 

T= 

determines two subtableaux 

1 6 11 14 4 I 10 
T”’ = and Tt2’ = 

2 8 9 

of shapes (4,2) and (3,l) = (2,1,1)‘, respectively. 

We have seen in Section 2 that the Brauer algebra Bk(n - m) acts on Vgk, and 

its action commutes with that of epo( V, j3) since it acts by epo( V, /I)-module mor- 

phisms. In particular, the diagrams d having all vertical edges form a subalgebra of 
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Bk(n - m) isomorphic to the group algebra of Sk, and the resulting action of @Sk on 

Vgk is by graded place permutations. We let c~,~ denote the transformation on V@’ 
determined by the diagram in Bk(n - m) with a horizontal edge connecting the pth 

and qth nodes on both the top and bottom, and with every other top node connected 

to the one directly below it. Thus, cp++i corresponds to the element ep in Section 2. 

We refer to the transformation c~,~ as a contraction mapping. Clearly, c~,~ =c4,*, and 

we may suppose in working with contraction mappings that p c q. If p = { ~1,. . . , pJ} 
and q = (41,. . . , qj} are disjoint ordered subsets of X = { 1,. . . , k}, we set - 

cp4l = %,q, . . CP,44, for j=l,..., Lk/2], (3.5) 

and we assume co,0 is the identity diagram. Since the image @ Cv,wEB F,T$ @ w of e 

(see (2.17)) on V @* is a one-dimensional trivial spo( V, /I)-module, we can draw the 

following conclusion (in Proposition 3.6(a) below) that explains why these mappings 

are termed contractions: 

Proposition 3.6. (a) V@‘c,,, N V@ckW2) for all p,q = 1,. . . , k with pf q. 
(b) Let VBk be the subspace of all vectors in Vmk which are annihilated by ccl1 

contractions c~,~. Then Vak is an spo(V,p)-submodule and an Sk-submodule of V@‘. 

(c) Let Pkc P,q be the subspace of all vectors in VBkc,,, which are annihilated by 

all contractions c,,r with s,tE(pUq)C=X-(puq). Then PkcE,! is an spo(V,fl)- 

submodule (isomorphic to V@(kT2j),Pj = IpI = 1qT) 2. h w zc is invariant under the action 

of the symmetric group SQ~~)“. 

Proof. Since each c~,~ commutes with the action of spo( V, p), it determines an 

epo(V,P)-module endomorphism on VBk, and Wk, which is the intersection of the 

kernels of the maps I+_,~, is thus an spo( V, /I)-submodule. Its invariance under the action 

of Sk comes from the identity 

0-l %P = CdPMd (3.7) 

which holds for all o E Sk and which can be verified in Bk(n - m) by just multiplying 

the corresponding diagrams. Part (c) follows by combining (a) and (b). 0 

3.2. Construction and linear independence of maximal vectors 

Ifp={p1,..., Pj} andq={ql,..., qj} are disjoint ordered subsets of X = { 1,. . . , k}, 

let (Kq)={(p1,41) -- , . . . , (ii, qj)}, and denote by ~0’) the set of all such (p, 4). Assume 

LWJ 

P = U p(j). 
j=O 

(3.8) 

Using the contractions cp,? and the symmetrizers yr, we now construct maximal vectors 

of V@k. 



If n = 2s ffnd Y(i:Cz)) =5. s, lke~ 8” = ~;,~,f~,~y7. is u mximnl vector of weight il” = A- 

2i:+,& where wFP 4 
(_‘_ 

is the simple tensor obtuined~from w’T,p 4 by replacing the factors _‘.. 
us with U-F. 

Proof, Let w = w~E,q, First we observe that %)eElt is annihilated by all contractions hav- 
ing both subscripts in (p u q)c because (c. o’) = 0 whenever U, D’ E (tr,. . . , &,uI,. . . , u,, 

{r~~+l)}. Thus, WC~,~ E J~@‘“c!?~ and ~=~~‘~~,~,vT E J’@c~,~~T. We also observe that 
the weight of 8 is ihe same as the weight of w, which -is i., since the weights of 
v and t’* sum to zero, Now w~gn(~~~~ = IV for $I E RT and 7 G CT if and only if 
$ E RTI1) and ;! E RTI:,. That assertion follows from the fact that fi(tt, tj) = 1 for ail r; 
and p(ui, ui) = - 1 for ail r~, and from the symmetric property of the bicharacter. There- 
fore, when 8 is expressed as a linear combination of the basis tensors, the coefficient of 
w in 6, equals h(i)--‘IRT,t~I 3 1RT(2)/. Thus, 0 # 0. To prove that fI is a maximal vector, 
it suffices to show that it is annihilated by each of root vectors xj in (1.12). Since 
the image of a contraction is a trivial snof V, fi)-module, the sum of the terms with Xj 
acting on a pair of contracted slots is zero. Thus, xj annihiIates wcEY4 or produces a 
sum of tensors which are obtained by applying .Yj to a noncontra~ted factor, Each of 
those tensors has one factor in (p U q)” whose subscript has been lowered by one or 
a factor ut which has been changed to r,. For such tensors, each of them denoted by 
21, we argue that t:yT = 0, 

First consider the case that t; has been changed to 4-1 for I 5 i 5 r or that UI has 
been changed to tr. Suppose li/ E RT. Then there exists (n b) E CT which permutes two 
factors of II$ which are the same tj such that u$(uh)= -u$ (see (2.17)). Then 

Thus, we have C7ECr ~~~(~~(~~)~ = 0 for each $ f fir and oj?T = 0. 
NOW consider the case that Ui has been changed to ~(-1. Then there exists (QB) E RI 

permuting two factors of u which are the same ui such that u{ab)= I> (see (2.17)). As 
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Therefore, CtiERT sgn($)v$ =O, and OyT =O. Thus, for all such u we have VyT = 0, 

and consequently xi(wc,,,yr) = (xiwcE,,)y~ = 0. 

If n = 2s and S(Jc2)) =s, then the same argument as above proves that H” is a 

maximal vector of weight A- 2$+,6, since in this case x, for all j # Y + s - 1, Y + s 

acts on w” exactly as it acted on w. The action of x ,+_l is zero since all the factors U, 

have been transformed to u,*, while the action of x,.+, on ut” produces a sum of tensors 

each of which has one u,: factor changed to u,_t Consequently, 0” is a maximal vector 

as claimed. 0 

Now consider VBkc E,4 where (p, q) E p( jk/2] ). When k is even, V@k~fl,4 is the triv- -- 
ial spo( V, /I)-module K = 1, and when k is odd, it is isomorphic to V. If k is odd, then 

T E 3y’.Y.yV,,((p U q)“) consists of a single box with a number in it so that _vT = id. 

When k is e&r, <hen (p U q)c = 8, T = 8, and we set ye = id. Let wT,p,4 = wt . . . - 
w’k be the simple tensor prescribed by Theorem 3.9 in these cases. Then ~r,~,4c~,4_~7. 

is a maximal vector of weight 0 when k is even, and WT,~,~C~,~_VT is a maximal vec- 

tor of weight FI when k is odd. Moreover, V@k~p.‘i is generated by WT,~,~C~,~YT. To __ __ 
summarize we have: 

Corollary 3.10. For (p, q) E p( [k/2] ) _- 

PkC 

-- { 

K 

.u,q g 

if k is even, 

V if k is odd, 

and w~,~,~c~~~y~ is a maximal vector of’ VBkcE,, of weight 0 when k is even and qf 
weight EI when k is odd, where wT,p,! is as in Theorem 3.9. 

Now we show that the maximal vectors constructed above are linearly independent 

if the rank of the algebra spo( V, /3) is sufficiently large. Suppose r + s 2 k and s > 2. 

Assume I = (3.1,. . . , &, 0,. . .) is an (r,s)-hook shape partition of 1 for some 0 5 I < k 

and let i)‘) and )L(2) be the associated subpartitions. We argue that in this case 

C(,?(2))<s. Indeed, if e().(*)) =s, then since 2, 2 e(j)*)) =s, 1 2 1 = 1 i(l) 1 + 1 ic2) 1 2 

rs + s > r + s > k. This contradicts the fact that J partitions 15 k. Thus, when Y + .F 2 k, 

we need only work with the maximal vectors of the form w~,~,~c~~yT. 

Theorem 3.11. Suppose that r + s 2 k. Then 

is a linearly independent set of maximal vectors. 
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Proof. Vectors corresponding to different numbers of contractions are linearly inde- 

pendent because those vectors have different weights. As the weight is determined by 

the shape of the tableau T, vectors corresponding to tableaux with different shapes are 

linearly independent. Thus, it suffices to consider the (p,q)‘s in p(j) for some fixed -- 
value of j, and the tableaux T of a fixed shape il. Suppose 

c c aT,p.qWT,p,qCp~qYT - - 0, 

(p,qEp(j) TE.~.Y.c,4pUy)‘) 

where the sum is taken over all the tableaux T E X9’Fr,s((p Uq)c) of some given 

shape A=(%,,..., &, 0,. . .), which is an (r,s)-hook shape partition. We suppose that 

$1) = (1.1 , . . . , lb,) and JJ2) = (&+I,. . ,A,)’ = (A:+,, . . , A~,,) are the partitions deter- 

mined by lb, and let t, = /(n(l)) and e2 = G(3L(2)). Among the simple tensors involved 

in the expression for a fixed wT,E,YcE,f there is a unique tensor CT,,,, matching the 

following description: 

First when e2 = 0, the sequence of positions pl, 41, p2,q2,. . . , pi, qj in [T&q contains 

the first 2j terms of the sequence 

* * * * * 
t~+l,t~+,,tq+2,tr1+2,...,t,,t, ,UI,UI >...,%,U,. 

Note there are sufficiently many vectors to make this work since r + s -j > k -j 2 

k - 2j = )I\ > t, implies r + s - tl 2 j. Similarly when e2 # 0, then the sequence of 

positions ~1~91, p2, q2,. . . , pj,qj in [T,~,~ contains the first 2j terms of the sequence 

~Pz+I,u,*,+,~ u/,+2, U;*,+*, . . . > 
* 

us> u, > 

and there are enough vectors in this case since r + s - j > k -j > k - 2j = 121 > tl + 

~5 = r + t2 so that s - & 2 j. Then it follows that 

where the sum is over T of shape A. The simple tensors in the above corresponding 

to different choices of (p,q) are linearly independent, for the positions of the factors 

t/(jjl))+i and t~j~~,)+i~ or U/(P))+; and ur*(~,)+~ are sufficient to distinguish them. Thus, 

for any (P,~)E PO’), -- 

c aT,p,&T,p,&yT = 0. 
TEA‘.Y~,,((JJU~)') - - -- 

(3.12) 

If some coefficient in (3.12) is nonzero, then since the sum is over tableaux of the 

same shape, we may choose T’ minimal in the order with the property that ap,p,4 # 0. 

By Lemma 3.3, T > T’ implies that YrYT< = 0. Thus applying yrl to (3.12), we obtain 

O= aT’,p,qcT’,p,yyT’.vTf = aT’.p,q~T’,f,fyT’. -- -- 

Since the vector [TI,~,~ appears in [TJ,~,~JJT, with coefficient equal to h(A)-‘. 

IRTlcl) IRTw as we discussed in the pro;? of Theorem 3.9, [T’,p,qyT’ # 0. Hence, 

-- no such T’ exists, and aT,p y = 0 for all T and all (p, q), 0 
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4. The epo( V, /Q-modules T” and their characters 

4.1. Definition of the modules T’. 

Let spo( V, /I) be the orthosymplectic Lie color algebra and assume that m = dim V(O) 

and n = dim V,,,. Recall that by Theorem 2.16 there is an action (which we write on 

the right) of the Brauer algebra Bk(n - m) on VBk which commutes with the action 

of epo( V, p) on V @k For convenience we write w d rather than w& for the action of . 

the element d E Bk(n - m) on w E Vak. 

Suppose that In -ml >k. Then by the work of Wenzl [48] we know that the Brauer 

algebra Bk(n - m) is semisimple and has simple summands indexed by the partitions 

in the set 

Bk={I~Fk-2hjh=0,1 ,..., [k/2]}. 

More specifically, there are positive integers dj., 1, E Bk, and an isomorphism 

where A&(K) denotes the full matrix algebra of di x d;. matrices with entries in rc. 

For each A E gk and 1 <P, Q < d;L, let Ei,e denote the matrix unit in the ith block 

Of @i.,;;, A&(K) which has a 1 as the (P, Q) entry and zeros everywhere else. Let 

ei, e = r-’ (Ei, Q) and define 

(4.1) 

where A’ denotes the partition conjugate to I, and the action of Bk(n -m) on V@’ 

is as given in Theorem 2.16. Then T”’ is a g-module since the action of g on V@’ 

commutes with the action of ei,p E Bk(n -m); however, the module T” may be (0). 

Proposition 4.2. rf In - ml > k, then the following hold: 

(a) The g-module T”’ is well-defined (up to g-module isomorphism it does not depend 

on the choice of P and Q). 

(b) As modules for g x Bk(n - m), 

VBkN @ TL’@BL” @ T’.@BBn, 

j&EEL &Bk 

where B;, is the irreducible Bk(n - m)-module labelled by A for each 2 E Bk. 

Proof. We shall only sketch the proof of this standard result. 

(a) The map 

w ei,e H w ei,Qe& = (w ej,,)efi,s 
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is a g-module isomorphism with inverse given by 

wefis H we~se~Q=(we&)e~Q. , I 

(b) For each i Egk, the irreducible Bk(n - m)-module B). has a basis {ei 1 1 5 

Q 5 d),}, and the action of Bk(n -m) on this space is given by 

ei.eP -6. 6 2 
Q R,S - A,P Q>Res. 

Note that since 1 = C,,Z~ CICQCd. eL,Q we may write 

For convenience, let us fix a particular index, say P = 1, for each i E gk and set 

T”’ = V@‘ef,, . Now one can check that the maps 

@:@) T”‘@& + V @k = CA CQV@keA,Q 

we;,, @e,$ ++ wet,Q=(wet,Q)eh,QE V@eA,Q 

and 

@’ : V@’ = xi cQ VBkeA,Q + ei. T”’ @ Bn 

are g x Bk(n - m)-module homomorphisms which are inverses of each other. 0 

4.2. Characters of the Brauer algebra 

If dl is an ml-diagram and d2 is an rnz-diagram, then dl @ d2 is the (ml + mz)- 

diagram obtained by placing dl to the right of d2. Let e denote the 2-diagram 

e= 9 

and let yrn denote the m-diagram 

(4.3) 
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For a partition P = (PI, ~2,. . . , Pi), let Ye = yP, @ yP2 @ . . . @ yp,. We have the following 
results from [38]. 

Theorem 4.4. (a) If y # 0, then any character of the Bruuer algebra Bk(n) is com- 

pletely determined by its values on the elements e@i @ y,,, for j = 0, l,, . . , Lk/2] and 

11 i-k - 2j. 
(b) Assume that ICC C so that n E C. Zf u] q’Z or tf n E Z and InI >k, then the 

irreducible characters of Bk(n), 

which are indexed by the partitions 2 in the set Sk = (3, E k - 2h / h = 0, 1,. . . , 
Lk/Z] }, are given by 

where &,(p) denotes the irreducible character of the symmetric group sk_2j labelled 
by v t- k - 2j evaluated at the conjugacy class indexed by u t k - 2j, and ~1,~ is the 

Littlewood-Richardson coefJicient (see (4.9) below), and the inner sum is over all 
partitions 8 with even parts. 

4.3. Weighted traces 

Assume that the basis B = Bo U B1 of V is as in (1.8). Let {zb}bEB be a set of 

commuting variables indexed by the elements of B such that 

-’ zb’ =zb for all bEB (4.5) 

(in particular, z,~+, = 1). Define an operator D on VBk by 

D(bl @bz@ ... @bk)=Zt&...Z&(bl @b2@ ... @bk) 

for bl,bz,..., bk EB, Or Simply D(b, . . . bk) =zb,zb2 . .Zbt(bl . . . bk) deleting the tensor 

symbols. Since (by a brute force check) D commutes with the action of the generators 

ei and si, 1 5 i < k - 1 of the Brauer algebra, it follows that D commutes with the 

action of the Brauer algebra Bk(n - m) on V @k Using D we define the weighted trace 

of dEBk(n-m) by 

wtr(d) = TrVo,(dD). (4.6) 

Lemma 4.7. (a) Zf d is a k-diagram, then 

w&(d) = c zb,zb, . . zb$&_,~, 

bj,bs,...,ba EB 

where b = (bl, b2,. . . , bk) and db b denotes the weight of the diagram d labeled on the -3 - 
top by bl,. . , bk EB and on the bottom also by bl,. . . , bk. 
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(b) The map wtr is a truce on Bk(n - m), i.e., wtr(didZ)=wtr(dzdi), for all 

dl,dZEBk(n-mm). 
(c) If dl is a k-diagrum und d2 is un d-diagram then 

wtr(di @ d2) = wtr(dl)wtr(dz). 

(d) IfdEBk(n-m) then 

wtr(d) = c xiiC, _ ,)(d)char(T”), 

i E 81 

where x&n _m, denotes the irreducible character of Bk(n -m) indexed by i’ E& and 

char( T’) = Tr,, (D). 

Proof. (a) This is a direct consequence of the definition of the weighted trace. 

(b) Since the actions of D and Bk(n -m) commute on VBk, it follows that 

wtr(dld2)=Tr(dldzD)=Tr(d2Dd,)=Tr(d2dlD)=wtr(d2dl). 

(c) This comes from (a) and the fact that if bl,..., bk,b,++l,. ..,bk+( E B, then 

D(b, . . bkbk+, . . .bO= (D(bl . ..bk))(D(bk+~ .. . bk+/)) 

and 

(61 . ..bkbk+l . ..bk+/)(dl @d2)= ((b, . ..bk)d.)((bk+, . ..bk+/)dz). 

(d) It is clear that T” is also invariant under the action of D as the actions of D and 

the Brauer algebra Bk(n -m) commute. Thus, all the statements of Proposition 4.2(b) 

hold with D in place of g. By taking the trace of the operator dD on each side of the 

isomorphism in Proposition 4.2(b) (with g replaced by D) we have that 

wtr(d)=TryBk(dD)= c TrB,,(d)Trr,(D) 

i. E Bk 

= c &, _ ,,(d)char( 7’“). 

iEBk 

0 

In view of Lemma 4.7(c) and Theorem 4.4(b), it is sufficient to compute the 

weighted traces wtr(d) when d is a k-diagram of the form e@j @ yAc. This is done 

in the following lemma. 

Lemma 4.8. Let ,u=(p,,p2 ,..., pt) be a partition of k-2j for some jE{O,l,..., 

Lk/21}. Let e@.i @y,, be the k-diagram coming from (4.3). For each positive integer 
t suppose 

p/(Z)= c z; - c (-1)/z;: 

bEB, b E Bo 
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and let 

&G) =p,,,(Q. q,,m. 

Then 

wtr(e’j 8% y,() = (n - m),ip,,(i). 

Proof. From the definition of the labeled diagrams and the properties of the matrices 

FE and Fi’ in (1.9a) and (1.9b) we see that 

eh, h = Fb; L2 Fb, ,b> = 

1 

-1 if b: =bZEBO, 

1 if bT = b2 E B1, 

0 otherwise, 

where b=(bl,bz). If h=(bl,bZ,...,bk) then 

/-I 

(;I/ 1b.b = j-J 6 b,,b,+c(-B(b/,bi))= 
(-l)‘-‘/I(b,b)‘-’ if b=(b,b ,..., b), 

i=l 0 otherwise. 

Consequently, we have 

wtr(e)= c ZblZbzeb,Q= 1 (-l)zb% f c ZbZh* 

h,h EB b E Bo hEBl 

= c (-I)+ c 1 =II-Mm, 
b t Bo bt BI 

wtr(:,/)= C zg(-l)‘-’ + C zb/. 

b E 50 bE BI 

The result now follows since by Lemma 4.7(c) we have that 

wtr(e03i By!,) = wtr(e)jwtr(y,,, )wtr(y,,,). . . wtr(T,(,). 0 

4.4. Symmetric ,functions and u combinatorial description of char(T”) 

We adopt the notation for partitions and symmetric functions found in [32]. Let us 

begin by recalling a few definitions. 

Suppose Y = {yi,. . . , yq} is a set of commuting variables ordered by yr < y2 < 

.‘. <yq, and assume 1” and n are partitions such that p C 1. A column-strict tableau 

of shape A/p is a filling of the boxes in the Ferrers diagram of i/_u with y,‘s such that 

the y, ‘s are weakly increasing (left to right) across the rows and are strictly increasing 

down the columns. Associated to a column-strict tableau T of shape n/p is the mono- 

mial yT, which is the product over all boxes of j-/p of the elements _vj in the boxes. 

The skew Schur function is the sum 

Q’,,(Y) = c YT, 
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over all column-strict tableaux T of shape A/p. The (ordinary) Schur functions S;(Y) 

is just the skew Schur functions sj./pc( Y) in the special case that p = 0. The Littlewood- 

Richardson coefJicient is the nonnegative integer CL,, defined by 

(4.9) 

The Littlewood-Richardson coefficients exhibit certain symmetries such as 

(4.10) 

It is a standard fact that the skew Schur functions can be written in terms of the 

ordinary Schur functions via the relation 

(4.11) 

A partition p can be specified by its Frobenius notation p=(ql,.. . ,qP 1 t-l,.. . ,r,) 

where the main diagonal of p consists of p boxes (i, i), 1 < i < p, and there are qi 

boxes to the right of (i, i) in the ith row and ri boxes below (i, i) in the ith column. 

When p partitions k, it is customary to write Ip] = k. We have the following identities 

involving Schur functions (see [32, pp. 77-791): 

(4.12) 

where the sum is over all partitions of the form ~=(r, +l,...,q+l JY,,...,~), r, 5 

q - 1, in Frobenius notation; 

n C1 -Yiyi)=C(-1)““2s,(Y), 
I<icj<q B 

(4.13) 

summed over the partitions rc=(yt -l,...,r,-- 1 IQ,...,%), rl 5 q- 1, in Frobenius 

notation; and 

n C1 -.YiYj)-l = x s@(Y), 
I <i<jCq 0 even 

(4.14) 

where the sum is over all partitions I3 with even length rows (all parts even). By using 

the above identities one can easily prove the following. 

Proposition 4.15 

C(c (-lP’2c:,p c Cj;J = &,,I, 
Y P )( ) 0 even 

(4.16) 

where the sums over p and 8 are as in (4.12) and (4.14), respectively. 
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Proof. By using (4.12) (4.14), and (4.9) to expand, we get 

and by comparing coefficients of the Schur functions on each side, we get identity 

(4.16). El 

Let us recall the definition of the hook Schur functions given in [6, 451, which 

describe the characters of the irreducible gI(V,j3)-modules appearing in VBik when 

G=&, and /?(a,b)=(-l)ab; that is, for the general linear superalgebra. Order the 

variables Zb, b E B = Bo U B1 , by 

Zf, <z,; < . . <Z& <zt; <z,, <z,; < “. <z, <Z,f <(z,,+,). 

A bitableau of shape ,J is a filling of the Ferrers diagram of ,? with elements of B 

such that: 

(1) the portion of the diagram filled with zt’s is the diagram of a partition p C 2, 

(2) the zt’s are weakly increasing (left to right) along rows and strictly increasing 

down columns, 

(3) the zU’s are weakly increasing down the columns and strictly increasing left to 

right across the rows. 

If T is a bitableau of shape i, then z ’ is the product over all boxes of 2 of the 

elements zb in the boxes, and the hook Schur function (see [32, Ch. I, 5 3, Example 

23-24 and Ch. I, 3 5, Example 231) is given by 

Sj,(2)= CZ’, 

T 

where the sum is over all bitableaux of shape 2. 

The hook Schur functions satisfy the following identities (see [32, Ch. I (4.3), (4.3’) 

(7.7) and 5 3, Example 231): 

where si(Y) denotes the ordinary 

then 

(4.17) 

(4.18) 

Schur function in the variables ~1,. . . , yq. If 1. k k, 

(4.19) 
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where (i) xi@) denotes the irreducible character of the symmetric group indexed 

by the partition /11 k evaluated at the conjugacy class labeled by the partition p b k, 

(ii) 3,( is the cardinality of the centralizer of an element of cycle type ,U in Sk, and 

(iii) phi(Z) is the function which is defined by 

P/(Z) = c z:, - c (- 1 >‘zA, and I&) = I+,(,%. P,~,@). 
h E &I hEB, 

The functions Y,(Z) defined in Lemma 4.8 satisfy p/(Z) = (-l)/(-~((2)) for 

all P>O, and p,,(Z)= ~,(-l)~~l(~p,,(~))=(-I)“-‘(~‘)p,,(i), for a partition PFk. 

Then (4.19) and the fact that x&(p) = (- l)k-‘(LL’~,$(p) (see for example, [32, Ch. I, 

5 7, Example 21) gives 

(4.20) 

Let Za = {zb / bc&} be ordered as in the definition of the hook Schur function. 

A symplectic tubleuu of shape 1. is a filling of the boxes in the Ferrers diagram of A 

with zh’s, bEBo, such that: 

(1) the Zb’s are weakly increasing (left to right) along rows and strictly increasing 

down columns, 

(2) the elements zI, and z’: never appear in a row with number greater than i. 

Associated to a symplectic tableau T of shape i. is the product zT of all the elements 

zb in the boxes of i. The symplectic Schur function is defined by 

(4.21) 

where the sum is over all symplectic tableaux T of shape i,. 

Assume q = Card(Y) is sufficiently large, i.e. q >> P-, and define functions sci(Za) by 

the identity 

c 1 
sci.(za)s~(y)= nbEBo n,“=,(l _ zhyj) ,<ici<q(l - NJ?). I-I 

i 
(4.22) 

When i, is a partition such that d(3,) < 7, then sc;.(Za) = spi(Za) and these polynomials 

are the characters of the symplectic group Sp(2r) and its Lie algebra sp(2r). The 

combinatorics of these functions is discussed in [46]. 

Analogously suppose ZI = {zh 1 b E B1 } and assume q > s. Define functions sbJ,(Z, ) 
by the identity 

c sbj~(zl)sj~(Y)= nb,,,pz;(l _zby,) ,<i<j<q(l - Jw). rI i 
(4.23) 

When Card(Bi) is odd and i is a partition such that t(A) 5 s, then the polynomials 

sbj,(Zi) describe the characters of the orthogonal group SO(2s + 1) and its Lie algebra 
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542s + 1). In this special case these functions have a combinatorial description similar 

to that of the symplectic Schur functions (see, for example, [47]). 

Theorem 4.24. Let Z be the set of variables {zt,} indexed by the elements b E B = 

BoUBl andlet Y=yl, . . . , y, be an auxiliary set of variables such that q >> r,s. Then 

the following identities give equivalent dejinitions of polynomials SC;(Z): 

(a) SC>.(Z) = 2 (7 (-1 )““2Ci3X) s,,(Z), 

wlhere sP(Z) denotes the hook Schur function labeled by u, and c:,~ is the Littlewood- 

Richardson coeficient. The inner sum is over all partitions of the form z= 

(rl - I,..., r,-llrl,..., r,), r1 < q - 1, in Frobenius notation. 

bchere the inner sum is over all partitions of the form p = (r, + 1,. , rP + 1 1 rl,. . . , rr), 

rl 5 q - 1, in Frobenius notation. 

(e) sCi(2>= i det(h;,,-i-j+2(2) + hj.,_,+j(Z)), 

wlhere h/(Z) =scf)(Z), and (e) is the partition of / with just one part. 

(0 SC).(Z) = i det 
(en;-i-j+z(p) - e;.;-,-j(2)) 

+ (e++j(g) - e;.;-i+j-*(f>) 

where e/(Z) =sC,/,(Z), and (1’) is the partition of / lvith all parts equal to 1. 

(8) SC~,(P) = det(e+i+i(.P) - e+_j(g)), 

(h) Scl(~) = C SCp(ZO)si'/p'(ZI), 

pci. 

where sj.,!,l,(Z1) is the skew Schur function in the variables ZJ,, b E B1. 

(i) W(Z) = c sb,,r(Zl )sj+(Zo), 
}lC” 

where sj./,(Zo) is the skew Schur function in the variables zb, b E Bo. 
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Proof. Let us begin by proving (a) w(b), which follows from the calculation, 

Next we prove (c) using (a): 

C Sfl(Z) C (-1)'X1'2Cj;,nSjb( Y) 

by (4.9), 

The proof of (d) using (b) is virtually the same using (4.11) and (4.16). 

Now let us argue that (c) implies (e): For each partition /, = (il,. . . , A,), 3,i 2 A2 > . . 

2 2, > 0 define 

aj,+a( Y) = det(y:+q-i), 

where the matrix (y:/+‘-j ) is q x q. Then aa(Y) = n15i<j<q(yi - vi), and the Schur _ 
function sn(Y) can be written as 

ai,+a(Y) 
Sj.( Y) = ~ 

Q(Y) 

([31, Ch. I, 5 3.1). Let us write y’+” = y’;1+Y-‘y~fy-2.. . y$. If f(Y) is any symmetric 

function in the variables yi , . . . , y,, then the coefficient of sj,( Y) in the expansion of 

f(Y) in terms of Schur functions is given by 

u”(Y)lSj(Y) = u-(vQ(~)l”~+~ 

Thus, 
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where 

n(l -yiYj)n(Yi-Yj)=II(Yi-Yj)(l -YiYj) 
icj i<j r<j 

=n (((YjfYJ-I)-(Yi+yi’))YiYj) 
i<j 

=(y, . . yg)q-’ det ((yi + y;‘)q-(q-j+‘)) 

zz gy, . . 

> 

= $det yi 
( 

q+i-2 + ?;y-i) 

Now from (4.17) we see that 

Thus, we obtain 

= ; &t ([ 1 h,(.Q(yy+j-2+r + yy-j+r) 
i-20 I 1 i,+q--i 

Y, 

= i det (h>.,-i-j+2(2) + An,-i+j(f)) . 

Identity (f) is gotten from (d) by a similar argument. 

To show (f) implies (g), add columns j - 2, j - 4, j - 6,. . . to column j for each j. 

That is, add column 1 to column 3, add column 2 to column 4, add columns 1 and 3 to 

column 5, add columns 2 and 4 to column 6 and so on. The result follows immediately. 

To derive (h) from (c), just compare the coefficients of SJ.(Y) on both sides of the 

following equation: 

c SCj,(i)Si( Y) = 



38 G. Benkart et al. I Journal of’ Pure and Appfied Algebra 130 (1998/ 1-48 

= -&.(Y) ~.QZo) c c$~(Zr ) by (4.9), 

= ~~j,(Y)~~c~(Z~)~c,:,“,~“/(Z,) by (4.10), 

i P V 

by (4.11). 

Obtaining (i) from (d) just amounts to a similar argument comparing the coefficients 

of si(Y) on both sides of the following equation: 

Theorem 4.25. Assume In - ml > k, and for 1” F k - 2h, h = 0, 1,. . . , lk/2], let T’ be 

the epo( V,/3)-module in (4.1). Let xi(p) be the function dejined in Theorem 4.24 
and let char(T’) be as dejned in Lemmu 4.7(d). Then 

char( T’) = xi(g). 

Proof. Suppose p k k-2j for some j = 0, 1,. . . , Lk/2J. Then by Lemmas 4.7(d) and 4.8, 

(n - m)$(Z) = C ~&,-~,(e’j @ y,)char(T’“). 

i&Z 

Thus, it follows from Theorem 4.4 that 

P,@>= c c xtk_,(p)char(T”)- 
iEgk ST_>).’ 

By (4.20) and the orthogonality of characters for the symmetric group we have, for 

v k k - 2j, 

= c ( E”:,o) char(T”). 
REL$ 
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Thus, by Theorem 4.24(b) and (4.16) it follows that 

(- 1 )‘P1’2~& 

= &l,Achar(T’), 

for all partitions iv t k - 2h, h = 0, 1,. . . , [k/2]. El 

Remark 4.26. It follows immediately from the definition of the skew Schur functions, 

the definition of spn(Z,~) in (4.21), and Theorem 4.24(h) that the functions SC;.(Z) for 

certain partitions i can be expressed as a sum over weights of tableaux which have a 

symplectic part and a row-strict part. It is this interpretation which allows us to develop 

an insertion scheme modelling these functions in the next section. 

5. Tableaux and an insertion scheme 

5.1. Up-down tableaux and spa-tableaux 

Fix positive integers r and n. An up-down tableau of length k and shape /z is a 

sequence of partitions fl = (no, 3,’ ,...,lk) such that a0 =0 and Jbk =3, and, for each 

i=l , . . . , k, R’ is obtained from 3.‘-’ by either adding or removing a box. An up-down 
(Y, n)-tableau is an up-down tableau /1= (0 = iLo, E.’ , . . . , ik = A) of length k and shape 

i such that each ni is an (Y, la)-hook shape partition, that is, 3;+, < n. If Ak = A is the 

final shape, then i i-k - 2h for some 0 5 h < jk/2j. 

Example. When k = 7, 

is an up-down (r, n)-tableau of shape d = (1, 0, . . .) for all r 2 1 and n 2 1. 

Let Bo = { tl, t” , ,. ..,t,.,t,“} and Bi = (~1,. . . , v,} and let B = Bo U BI . Here we do not 

need to distinguish between n odd or n even and for that reason we do not use the 

notation 241, u* , ,. . . ,u,,u~,(zJ,+~) for the elements of Bi as we have done in previous 

sections. Order B as follows: 



Suppose m = 2r and n are fixed. An spo(m, n)-tableau T qf shape A (or simply an 
spa-tableau for short) is a filling of the boxes in the Ferrers diagram of J. with entries 
from B such that 
(apo.1) the subtableau S of T obtained by taking all the boxes with entries from Be 

is a column-strict tableau of partition shape (its entries are weakly increasing 
from left to right across each row and are strictly increasing from top to 
bottom down each column), and the entries in row i are 2 t/ for each row in 

s; 
(spo.2) the skew tableau T/S is row-strict (its entries are strictly increasing from left 

to right across each row and are weakly increasing from top to bosom down 
each column). 

In an epo(m,n)-tableau the entries in row i for i 2 r + I necessarily belong to BE, and 
since the skew tableau T/S is row-strict, the underlying partition must be an (I; n)-hook 
shape partition. 

Example. Let 

T= 

- 

Then T is an spo(m,n)-tableau for all m > 8 and n 2 4 where 

S= 

t, t; t2 

t; t;; 

f3 t3 

t4 
- 

and TIS = 

Theorem 5.1. Zf T is an spo(m,n)-tableau, replace each entry by the corresponding 
variable zb as defined in (4.5) and let zT be the product of the entries in the result. 
Let SC,@) be the polynomial defined in Theorem 4.24. Then 

SC&) = c ZT, 
T 

where the sum is ouer all the ~~o(?n,n)-tableaux of shape 1. 

Proof. Suppose T is an ~~o~rn,n)-tableau, and let f denote the subtableau of T con- 
taining the entries tr , t* i ,. . . , t,., t,*. Necessarily the number of rows in S is < Y. When 
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the entries ti, tlF, i = 1,. , r of S are replaced by the elements z~,,z,,* , then the result is 

a symplectic tableau as defined just before Eq. (4.21). Likewise, if we substitute the 

element zV, for the entry L'J, j = 1,. . , n, in T/S and transpose the resulting tableau, 

what is produced is a column-strict tableau. The result then follows from the definition 

of the skew Schur function, (4.21) and Theorem 4.24(h). 0 

Assume Y&i is the set of words of length k in the alphabet B, and & is the set of 

pairs (T, A) consisting of an spo(m,n)-tableau T of shape 3, and an up-down (r,n)- 

tableau /i = (i’,i’, . , ik) of length k and shape 1.. 

We shall prove in Theorem 5.5 that there is a bijection between %$ and yk. Ac- 

complishing this requires introducing a few more definitions. 

5.2. Punctured tableaux and the maps jeu and injeu 

A punctured tableau is a tableau with exactly one empty box. A punctured spo- 

tableau is a punctured tableau obtained from an opo-tableau by removing the entry 

from exactly one box. If a partition i, contains a box at position (i, j), and there is 

no box at locations (i, j + 1) and (i + 1 ,j) in i,, then (i, j) is said to be a corner 

of i.. When a punctured tableau has its empty box at a comer, we may identify the 

punctured tableau with the tableau obtained by removing the empty box. 

In Lemma 5.2 below we shall define operations se and nw on the set of punctured 

spo-tableaux, but first we make the following definitions. 

(i) 9% is the set of punctured spo-tableaux whose empty box occurs at a comer. 

(ii) ,I?@ is the set of punctured spo-tableaux whose empty box is in the first column, 

and either the empty box is in the first row or the tableau obtained by switching the 

empty box with its neighbor to the north (the one immediately above it) is not a 

punctured spo-tableau. 

Lemma 5.2 (Compare [5, Lemma 21). Let T be a punctured spo-tableau. 

(i) Suppose T # 5%. Then there is a unique way of’ switching the empty box of 

T either with its neighbor to the east (the box on its right) or with its neighbor to 

the .south (the box immediately below) so that the resulting tableau is a punctured 

epo-tableau. We denote the resulting tableau by se(T). 

(ii) Suppose T @.NYY. Then there is a unique way of switching the empty box of 

T either with its neighbor to the north or with its west neighbor (the box on its left) 

so that the resulting tableau is a punctured rjpo-tableau. We denote this resulting 

tableau by nw(T). 

(iii) Zf T @’ 98, then nw(se( T)) = T, and if T 6 NIV, then se(nw( T)) = T. 

Proof. Assume the neighbors of the empty box are as pictured below, where one or 

more of the boxes with letters may be absent. (We are not necessarily displaying the 

entire tableau rather just the neighbors of the empty box since they are all that matter 
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in the argument.) 

First consider the case that all the neighbors of the empty box are present. We note 

that a <c since a 5 y 5 c, and at least one of the inequalities is strict. Similarly b <d 

holds since b 5 z < d and at least one of the inequalities is strict. 

To prove (i) consider the tableaux 

e(T)=~: and s(T)=~l. 

If c = d E Bo, then only s(T) can be an spa-tableau. If d is in row i of T, then 

since T is an spo-tableau, d 2 ti > ti_ I so that condition (spa. 1) is fulfilled in s(T). If 

c = d E B1, then only e(T) is an spa-tableau. If c > d, then only s(T) is an spa-tableau, 

while if c cd, then just e(T) is 

whichever one is an spo-tableau. 

For (ii) consider the tableaux 

w(T) = 

an spo-tableau. The tableau se(T) is s(T) or e(T), 

(Note se(T) should not be confused with s(e(T)).) 

and 

If b = a E Bo and b is in row i, then ti < b = a <d and only n(T) is an spa-tableau. 

If b = a E BI, then b = a cc, and w(T) is an spo-tableau but n(T) is not. When a > b, 

then just n(T) is an spo-tableau, and when a < b, then only w(T) is an spo-tableau. 

The tableau nw(T) is either n(T) or w(T), whichever happens to be an spa-tableau. 

To prove (iii) suppose that T @SF and se(T) = s(T). By (ii) nw(s( T)) is either 

n(s(T)) or w(s(T)) depending on which is an epo-tableau, and clearly n(s(T)) = T is 

an spo-tableau. Thus, nw(se( T)) = n(s( T)) = T in this case. Similarly, if se(T) = e(T), 

then nw(s(T))= w(e(T))= T. For T @NW, using (i) we see that se(nw(T)) = T. 

Finally, we note that when the empty box of T has only one of its neighbors to 

the east or south, arguments similar to ones above can be used to show that se(T) 

is obtained by switching the empty box with the available neighbor. Also, when the 

empty box of T has just one of its northern or western neighbors nw(T) is obtained 
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by switching the empty box with the available neighbor. In these cases, (iii) holds 

similarly. 0 

Let 98 and A’%‘” be the sets of punctured spo-tableaux described just before 

Lemma 5.2, and define maps jeu : NW -+ 548 and injeu : 5% ---f NW as follows: 

(i) For TENW, there is a least integer j > 1 such that applying se to T j times 

gives a tableau in YZ?. Then jeu(T) %f (se)j(T). 
(ii) For T E 987, there is a least integer i > 1 such that (nw)‘(T) E NW. Then 

injeu( T) dsf (nw)‘( T). 
The following is an immediate consequence of Lemma 5.2. 

Lemma 5.3. The map jeu is a bijection from JVW to Y& with inverse mapping injeu. 

Example. The sequence below illustrates applying the mapping jeu to a tableau in 

JVYY and ending with a tableau in 98: t; t, t, 
EliI t, 02 

4 01 u2 

--I 
se 

t; t, 4 

t3 4 V 2 

01 02 

v2 

t; t2 t2 

EH t3 t3 02 

VI 02 

2 

t; t, t2 

t3 t3 u2 

0 I 212 

02 

c 

If we take the rightmost tableau in this sequence as the initial tableau and perform 

nw successively, then the sequence moving from right to left corresponds to applying 

injeu. 

5.3. Insertion of a letter into an spa-tableau 

Let T be an spo-tableau, and assume a E B. We define an algorithm consisting of a 

sequence of steps which inserts a into T to yield a tableau (a ---f T). 
(1) Start with b=a and i=j= 1. 

(2) If b E Bo, then insert b into the ith row of T as follows: If there is an entry in 

row i which is greater than b, then displace the leftmost such entry and insert b into 

its box except in the following case. If b = ti and there is an t” in the ith row, then 

replace the leftmost t,? in the row with ti and remove the entry in the (i, 1)-position 

(which is necessarily an ti) making it an empty box. If there is no entry in the ith row 

which is greater than b, then adjoin b to the end of the row. 

If b E B,, then insert b into the jth column as follows: If there is an entry in the 

jth column which is greater than b, then displace the topmost such entry and insert b 

into its position. If there is no entry in the jth column which is greater than b, then 

adjoin b at the end of the column. 
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(3) Set b equal to the displaced entry and change i to p + 1 and j to q + 1 where 

(p, q) was the position of the displaced entry. Repeat step (2) until an entry is adjoined 

to the end of a row or a column, or an empty box is created. 

(4) Let (a --f T)’ be the result of steps (l)-(3). Set (a + T) = (a --f T)’ if (a + T)’ 

is a tableau, and (a + T) =jeu((a + T)‘) if (a ---$ T)’ is a punctured tableau. 

Lemma 5.4. Let T be an spa-tableau and ussume a E B. Then (a---f T) is an spo- 

tableau. 

Proof. The algorithm for insertion of a letter into an epo-tableau is just Berele’s inser- 

tion algorithm (see [5, Lemma 41) for the part of the tableau involving entries from Bo, 

and it amounts to the usual Robinson-Schensted algorithm (see [40, Section 3.31, for 

example) for the skew-tableau with entries from BJ. Consequently, the result (a --f T)’ 

is either a tableau or a punctured tableau in JVYV. From Lemma 5.2 it is clear that 

(a + T) is an spa-tableau provided we identify a punctured tableau in Y& with the 

tableau obtained by removing its comer empty box. 0 

5.4. Insertion of a word into an spa-tableau 

Recall that ?I%$ is the set of words of length k in the alphabet B and 

9, is the set of pairs (T,A) consisting of an spo(m,n)-tableau T of shape 1 and an 

up-down (Y n)-tableau (1= (3” i’ b 3 ,. . . ,ik) of length k and shape J.. 

For k > d, define maps spa, : n/8$ + L& inductively by 

(i) spa,(w) = (0,(B)), where w is the emptyword; 

(ii) If w=wt .‘.wk is a word of length k and 5nok_,(wt ...x~k_~)=(T~-‘, 

(~~,~‘,...,i,k-‘)),thenspok(w)=(Tk,(~o,~1,...,j~k))whereTk=(~k~Tk-1)and/Ik 

is the underlying partition of Tk. 

Theorem 5.5. The map spa, : ‘Wi --) ,yk is u bijection. 

Proof. It is clear that anok E .yk for each w E ‘Y&i. To show that epo, is a bijection, 

it is enough to find its inverse, and for that it suffices to find the inverse of the 

step (w/ --t T’-‘) = T’. Let A’-’ and 1%’ be the underlying partitions of T’-’ and T’, 

respectively. We present an algorithm to produce w/ from Ar-‘,,?’ and T’. 

(1) (Initial step) If 2.’ is obtained from 3,‘-’ by adding a box, and if the entry in 

the corresponding box of T’ is a, then delete the adjoined box from T’ and apply (2) 

below beginning with b=a. 

If 3,/ is obtained from ,I-’ by removing a box, then consider the punctured epo-ta- 

bleau in 98 obtained by adding an empty box to T’ in the corresponding corner. Apply 

injeu to obtain a punctured spa-tableau in NW. The empty box is now in position 

(i,l) for some i. Fill the empty box with an ti, and then change the last tj in row i to 

an t,?. Apply (2) below beginning with b = t; regarded as displaced from position (j, 1). 

(2) (General step) Suppose that an entry b is displaced from the (i, j)-position of T’. 

If b E Bo, then from the (i - 1)st row of T’ remove the rightmost entry which is 

smaller than b and put b in the empty box. 
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If b E B1, then from the (j - 1 )st column of T’ remove the bottommost entry which 
smaller than b and put b in the empty box. 
Repeat this step until an entry in Bo is displaced from the first row or an entry in 
is displaced from the first column. That entry is w/. 

This gives the desired inverse process, and hence completes the proof. 0 

We refer to the map BPD& : %‘_ -‘.Pk as ~~~-ii~s~rtio~ and the inverse described in 

I 

the proof of Theorem 5.5 as epo-deletion. We illustrate epo-insertion and epo-deletion 
in the following example. 

Example. Suppose r = 4, n = 4, and k = 6. Then B = (t, <tF < t2 < t.f’ < t3 < 64 -=c t$ < 

UI -=c v2 < v3 -=c VJ}. Consider the word w = 02 t2 t;” tl v3 tl of length 6. Then spa-insertion 
for the word w is given by 

T”=(b, T’z V2 , q T’=ml, 

~iI,I=T4, T’=:’ ; v2 I, 

- 

Thus spa(w) = (T, A) where T = T6 and A = 

T3= 

To recover w from (T, A) we apply spa-deletion: 

Ts = ---t j] and ws= q, 

and w, = t,, 



G. Benkurt et al. I Journal of Pure and Applied Algebra 130 (1998) l-48 

T, = V2 3 f!J and w, = v2. 
iI 

Thus, we get w = 02 t2 t; tl 03 4. 

Corollary 5.6. For positive integers m = 2r and n, 

(m + n)k = c c u&(r, n> . spo~.(m, n) 
h=O iFk-2h 

where udi(r,n) is the number of up-down (r,n)-tableaux of shape 1, and spo,(m,n) 

is the number of epo(m,n)-tableaux of shape 1. 

Proof. This is an immediate consequence of Theorem 5.5 by counting the number of 

elements in the sets ^w^, and yk. 0 

Remark 5.7. By [48, 491, the dimension of the irreducible module Bn, A E gk = (1 t- k- 

2hjh=O,l,..., [k/2]}, for the Brauer algebra Bk(n - m) is the number of up-down 

tableaux of length k and shape i whenever Jn - M) > k. This is also the number of 

up-down tableaux of length k and shape 1,’ whenever In - mJ >k. By Theorem 4.24, 

char(T”)=scj&(.@. Thus, Theorem 5.5 gives an explicit bijection realizing the identity 

from Proposition 4.2(b). 
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